National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Comparison of single-cylinder and double-cylinder steam turbines
Bunček, Patrik ; Fiedler, Jan (referee) ; Kracík, Petr (advisor)
The master thesis deals with design and comparison of condensing steam turbine for steam-gas cycle for single-cylinder and double-cylinder body with air condenser at its end, one regulated take and ability to use additive steam. Thesis is based on the calculation of thermal scheme which is followed by a preliminary and subsequently a detailed design of steam turbine. Thermodynamic efficiency for single-cylinder turbine was calculated at 93,28 % with terminal power 136,2 MW. The design procedure was repeated for a double-cylinder body. Calculated terminal power for two-cylinder turbine was 134,4 MW with thermodynamic efficiency of 92.1%. By dividing turbine into two rotors resulting low-pressure turbine has a smaller rotor diameter, a longer blade and at the same time a larger number of stages. For double-cylinder turbine, it was necessary to consider twice the number of seals and radial bearings. Due to the increase in flow diameter of low-pressure turbine, losses related to the geometry of the stage increased. Thesis is supplemented by a section drawing of steam turbine with higher efficiency.
Comparison of single-cylinder and double-cylinder steam turbines
Bunček, Patrik ; Fiedler, Jan (referee) ; Kracík, Petr (advisor)
The master thesis deals with design and comparison of condensing steam turbine for steam-gas cycle for single-cylinder and double-cylinder body with air condenser at its end, one regulated take and ability to use additive steam. Thesis is based on the calculation of thermal scheme which is followed by a preliminary and subsequently a detailed design of steam turbine. Thermodynamic efficiency for single-cylinder turbine was calculated at 93,28 % with terminal power 136,2 MW. The design procedure was repeated for a double-cylinder body. Calculated terminal power for two-cylinder turbine was 134,4 MW with thermodynamic efficiency of 92.1%. By dividing turbine into two rotors resulting low-pressure turbine has a smaller rotor diameter, a longer blade and at the same time a larger number of stages. For double-cylinder turbine, it was necessary to consider twice the number of seals and radial bearings. Due to the increase in flow diameter of low-pressure turbine, losses related to the geometry of the stage increased. Thesis is supplemented by a section drawing of steam turbine with higher efficiency.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.